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Highlights  Abstract  

▪ A novel interval prediction model for RUL 

based on deep learning is proposed. 

▪ The interval prediction model combines the 

LSTM and LUBE to make full use of the 

timing information in the degradation data. 

▪ Experimental results show the RUL interval 

prediction performance has been significantly 

improved by the proposed method. 

 Deep learning is widely used in remaining useful life (RUL) prediction 

because it does not require prior knowledge and has strong nonlinear 

fitting ability. However, most of the existing prediction methods are 

point prediction. In practical engineering applications, confidence 

interval of RUL prediction is more important for maintenance strategies. 

This paper proposes an interval prediction model based on Long Short-

Term Memory (LSTM) and lower upper bound estimation (LUBE) for 

RUL prediction. First, convolutional auto-encode network is used to 

encode the multi-dimensional sensor data into one-dimensional features, 

which can well represent the main degradation trend. Then, the features 

are input into the prediction framework composed of LSTM and LUBE 

for RUL interval prediction, which effectively solves the defect that the 

traditional LUBE network cannot analyze the internal time dependence 

of time series. In the experiment section, a case study is conducted using 

the turbofan engine data set CMAPSS, and the advantage is validated by 

carrying out a comparison with other methods. 
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1. Introduction 

Remaining useful life (RUL) prediction of important 

mechanical parts is particularly important for important 

equipment such as aerospace, large-scale production lines, ships, 

railway and highway transportation. Accurate RUL prediction 

provides assurance for formulating appropriate preventive 

maintenance and replacement strategies, which can not only 

ensure the operation of mechanical equipment under high 

reliability conditions, but also avoid waste caused by over 

frequency maintenance. Therefore, the RUL prediction of 

mechanical parts has been paid more and more attention by 

scholars [17, 18]. With the development of material technology, 

the structure of various mechanical equipment is becoming 

more and more complex, and it is difficult to obtain accurate 

RUL through model driven method. Deep learning is widely 

used in data driven RUL prediction because of its strong 

nonlinear fitting ability and no prior knowledge[16]. Sateesh et 

al. [22] first applied the convolutional neural network (CNN) to 

predict the RUL of equipment, making full use of the feature 

extraction ability of CNN, and achieved good prediction results. 

Zhang et al. [30] took advantage of the feature that Long Short-
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Term Memory (LSTM) network can effectively extract time 

series information, and applied LSTM network to RUL 

prediction, further improving the prediction accuracy. Kong et 

al. [11] combined CNN with LSTM network to more fully 

explore the spatial and temporal characteristics of degradation 

data. Li et al. [13] proposed a directed acyclic graph network 

combined with CNN and LSTM, and used the sliding time 

window method to obtain samples to better extract features. Li 

et al. [15] proposed  a deep learning-based remaining useful life 

prediction approach to solve partial sensor malfunction problem.  

The above methods are mainly aimed at point prediction and 

achieve good results. Traditional point prediction cannot deal 

with the uncertainty in the system operation well and reduces 

the reliability of life prediction. Interval prediction can describe 

the possible upper and lower limits of the predicted value to 

describe the uncertainty of service life to cope with the risk. In 

practical projects, it is more important to study the confidence 

interval of life prediction for maintenance strategies based on 

reliability. Chen et al. [4] proposed a prediction interval 

estimation method based on improved fuzzy C-means algorithm 

and bidirectional short-term and short-term memory network to 

realize offline and online RUL interval prediction. Pang et al. 

[20] proposed an interval prediction strategy based on fuzzy 

information granularity and language description for RUL 

prediction of lithium batteries. Zhu et al. [32] proposed  

a Bayesian deep-active-learning framework for RUL interval 

prediction. Peng et al. [21] developed a Bayesian deep-learning-

based for health prognostics with uncertainty quantification. For 

the research on interval prediction of RUL, the current main 

methods are Bootstrap method [25, 27], Bayesian method [7, 10] 

and lower upper bound estimation (LUBE) method [1, 28]. 

Bootstrap, Bayesian and other methods require data to meet the 

premise assumption of a certain distribution. They need to 

calculate the mean and variance according to the form of data 

distribution, involving the calculation of Jacobian matrix or 

Hessian matrix, which requires a huge amount of calculation [3]. 

LUBE method is a new prediction interval estimation method 

developed in recent years, which has much less computation 

than the statistical method of neural network [8]. LUBE method 

is a neural network (NN) based time series prediction interval 

direct estimation method (NN LUBE). Different from the 

traditional neural network based statistical prediction interval 

estimation method, LUBE does not depend on the distribution 

of data, and outputs the upper and lower bounds directly through 

the neural network, so it has received extensive research and 

attention. However, the parameters of the neural network model 

in the LUBE method cannot be adjusted through the error based 

loss function and forward propagation like the traditional neural 

network structure [5]. Instead, the network model parameters 

can only be obtained through heuristic algorithms. For the time 

information contained in the degradation data in the life 

prediction, the traditional LUBE method cannot effectively use 

it, so it cannot accurately carry out interval prediction and 

reliability analysis. 

In order to make full use of the timing information in the 

degradation data and predict the interval RUL of the equipment 

more reliably, this paper proposes a model structure called 

LSTM-LUBE, uses LSTM to replace the neural network of the 

traditional LUBE method, and constructs the optimization 

model structure of the interval loss function that can be used for 

gradient descent. In this paper, the RUL interval prediction 

method is proposed. First, the multi-dimensional variables 

detected by multiple sensors are coded into one dimension using 

Convolutional Auto-Encode (CAE) network as the input 

characteristics of the life prediction stage. Then, the life interval 

prediction is carried out by using the life prediction framework 

combining LSTM and LUBE. The main contributions and 

innovation points of this article are summarized below. 

1. Use the CAE network structure to effectively extract the 

degradation characteristics related to the remaining service life 

of the system, and reduce the dimension and noise. 

2. A more effective life interval prediction structure using 

the time series information of degraded data is proposed, and a 

differentiable loss function is constructed for this structure. 

2. Theory 

2.1. Interval prediction of remaining useful life 

For the prediction of the remaining service life of products, most 

of the relevant work is focused on point prediction. However, in 

practice, especially for increasingly complex and sophisticated 

mechanical systems, interval estimation of the remaining 

service life of products is more meaningful than point 

estimation. At present, there are three main methods for interval 

prediction of remaining useful life: 
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(1) Interval prediction based on probability. The 

probabilistic interval prediction model requires high sample 

integrity and requires a large amount of statistical data for 

experiments. In practical projects, the sample is missing and the 

data is small, which is not applicable. 

(2) Interval prediction based on neural network. Such 

methods include Bayesian, bootstrap, Delta, Mean Variance 

Estimation (MVE) and other methods. Such methods usually 

need to assume that the data satisfies a certain distribution, such 

as normal distribution or Gaussian distribution, and then 

calculate the mean and variance according to the distribution, 

and calculate the prediction interval. This kind of method often 

needs matrix calculation, and the calculation cost is large. 

(3) Direct upper and lower bound interval estimation. This 

method does not need to make assumptions about the data 

distribution, and the calculation cost is small. The LUBE 

method uses neural network to output the upper and lower 

bounds of PI respectively. This method is direct to obtain the 

prediction interval. The neural network of LUBE method cannot 

construct suitable loss function for supervised learning, and can 

only use heuristic algorithm to obtain model parameters. 

2.2. Convolutional Auto-Encode 

Convolution neural network consists of a neural network 

composed of convolution and pooling [9]. Convolution acts as 

a filter, while pooling is to extract invariant features. Auto-

encoder is a neural network composed of input layer, hidden 

layer and output layer [19]. Its structure is shown in Figure 1.  

 

Fig.1. Structure of Auto-encoder network. 

By using the mapping relationship between input layer and 

output layer, it realizes sample reconstruction and extracts 

features. 

Due to the large amount of noise in the degenerated data of 

general mechanical components, it is difficult to extract features 

directly using CNN. Therefore, we use Convolutional Auto-

Encode (CAE) network [2] to encode and decode through 

convolution networks and deconvolution networks to obtain the 

final features. The specific optimization formula is as follows: 

ℎ𝑘 = 𝜎(𝑥 × 𝜔𝑘 + 𝑏𝑘)   (1) 

𝑥̂ = 𝜎(ℎ𝑘 × 𝜔𝑘̂ + 𝑐)   (2) 

𝐸 =
1

2𝑛
∑(𝑥𝑖 − 𝑦𝑖)2   (3) 

EQ.1 and EQ.2 are the coding and decoding calculation 

processes of the convolutional self encoder respectively. Where, 

k represents the kth convolution kernel, and each convolution 

kernel is composed of parameters 𝜔𝑘 and 𝑏𝑘, representing the 

feature vector extracted by the encoder. 𝑥̂ represents the output 

value after decoding and reconstruction. Finally, compare the 

Euclidean distance between the input samples and the final 

result obtained by feature reconstruction, as shown in EQ.3, and 

optimize the network parameters to obtain a complete CAE 

network. 

3. Our method 

3.1. LSTM-LUBE structure 

To make full use of the time series data of the turbine engine 

data set and more accurately carry out interval prediction, this 

paper uses the framework of LSTM and LUBE to carry out 

bearing interval prediction. The data input mode of LSTM-

LUBE is a degradation data set with a length of sliding window 

𝑊 after preprocessing; LSTM-LUBE has two outputs in each 

time step, corresponding to the lower and upper bounds of the 

prediction interval of the next time step. The calculation 

formula is: 

𝐿̂𝑡 = 𝑊𝐿 × ℎ𝑡−1 + 𝑏𝐿   (4) 

𝑈̂𝑡 = 𝑊𝑈 × ℎ𝑡−1 + 𝑏𝑈   (5) 

Where, 𝐿𝑡̂  and 𝑈𝑡̂  are the upper and lower bounds of life 

prediction at time t, 𝑊𝐿  and 𝑊𝑈  are the weight matrices 

corresponding to the upper and lower bounds respectively, and 

𝑏𝐿 and 𝑏𝑈 are the offset matrices corresponding to the upper and 

lower bounds respectively. 

The specific structure is shown in Figure 2. This structure 

uses LSTM to replace the networks used by LUBE, which 

effectively solves the defect that traditional LUBE networks 
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cannot analyze the internal time dependence of time series, and 

is more suitable for interval prediction analysis of degraded data. 

Different from the general LUBE method, LSTM-LUBE has a 

complex framework and many parameters, which makes it 

impossible to use the heuristic algorithm for interval prediction. 

Therefore, the key to this structure is to select a suitable loss 

function and use the gradient descent algorithm to optimize the 

interval prediction model. 

 

Fig.2. Network structure of LSTM-LUBE method. 

3.2. Construction of loss function 

Traditional interval prediction algorithms mostly adopt 

heuristic algorithms, such as particle swarm optimization 

algorithm [26] and genetic algorithm [24], combine SVM, ANN 

and other models, and use PICP, CWC and other evaluation 

indicators as optimization objectives to optimize the model and 

achieve interval prediction. However, most interval prediction 

evaluation indicators such as PICP and CWC are non-

differentiable, and gradient descent algorithm cannot be used to 

optimize the model. Therefore, we need to find a differentiable 

loss function, and then derive the gradient descent to update the 

model parameters, optimize the model, and achieve interval 

prediction. 

The construction of loss function shall meet the 

requirements of reliability and clarity [31]. Reliability refers to 

the overall probability that the actual value falls into the 

prediction interval. The higher the coverage is, the more reliable 

the interval is; Clarity is used to measure the average width of 

the prediction interval. The smaller the prediction interval, the 

clearer the range of the prediction value. It is worth noting that 

these two indicators often exist in opposition. The smaller the 

interval width is, the harder it is to ensure that the coverage is 

kept at a good level, and vice versa. Therefore, the loss function 

constructed should comprehensively consider two requirements. 

In addition, to optimize the target interval towards the target 

value, a penalty should be added to the extent that the target 

value deviates from the interval. The specific loss function is as 

follows: 

𝑓(𝜃) = ∑ |𝑦𝑖 −
𝑈𝑖−𝐿𝑖

2
|𝑛

𝑖=1 + 𝛾𝑖 ∗ 𝑒
𝑑𝑖

|𝑈𝑖−𝐿𝑖| ∗

max(0, 𝜇 − ∑ 𝛾𝑖
𝑛
𝑖=1 ) + 𝜆|𝑈𝑖 − 𝐿𝑖|

 (6) 

𝛾𝑖 = {
0      𝑦𝑖 ∈ [𝑈𝑖 , 𝐿𝑖]

1      𝑦𝑖 ∉ [𝑈𝑖 , 𝐿𝑖]
  (7) 

𝑑𝑖 = |𝑦𝑖 −
𝑈𝑖+𝐿𝑖

2
| − |

𝑈𝑖−𝐿𝑖

2
|  (8) 

Where, 𝑦𝑖   is the true RUL value , 𝑈𝑖  and 𝐿𝑖  are the upper 

and lower limits of the prediction interval, and 𝜆  is the 

proportional coefficients used to adjust the weights of the 

interval coverage and interval width. 𝑑 is the distance between 

the interval and the true value, 𝜇  is determined by the 

confidence interval. When the confidence level is 95%, 𝜇  is 

0.95. When the prediction results reach the confidence level, the 

loss function is mainly optimized to narrow the interval width 

and make the real value closer to the median of the interval. 

When the prediction result does not reach the confidence 

interval, the deviation degree is punished by exponential growth 

to optimize the interval towards high coverage. 

The flow of our method selection is shown in Figure 3. It is 

mainly divided into three stages. First, data preprocessing is 

performed, then CAE network is used to extract features, and 

finally LSTM-LUBE network is used to obtain prediction 

interval and evaluation index. Next, the CMAPSS engine data 

set will be used to verify the effectiveness of this method. 
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Fig.3. Flow chart of the proposed RUL interval prediction 

method. 

4. Experiment 

4.1. Dataset and preprocessing 

This paper takes the turbofan engine as the research object, and 

adopts the public dataset of aircraft engine simulation state 

monitoring provided by NASA Prognostics Center of 

Excellence (PCoE). It simulates different engine operating 

environments through CMAPSS software and outputs condition 

monitoring data of various components in the degradation 

process [23]. It is widely used as benchmark data in the research 

field of equipment residual life prediction. The dataset has 4 

subsets. The training set and test set select 21 sensor signals and 

three operating parameters. The training set includes the 

monitoring data of the entire degradation process of the turbine 

engine from the initial state to the first failure. The test set 

records the monitoring data from the initial state to a certain 

period before the failure. The remaining life set gives the 

remaining period of the test set engine from operation to failure 

[14]. Specific data set information is shown in Table 1. 

Table 1. Sensors of turbofan engine. 

Num Symbol Description Units trend 

1 T2 Total temperature at fan inlet ° R ~ 

2 T24 Total temperature at LPC outlet ° R ↑ 

3 T30 Total temperature at HPC outlet ° R ↑ 

4 TSO Total temperature at LPT outlet ° R ↑ 

5 P2 Pressure at fan inlet psia ~ 

6 P15 Total pressure in bypass-duct psia ~ 

7 P30 Total pressure at HPC outlet psia ↓ 

8 Nf Physical fan speed rpm ↑ 

9 Nc Physical core speed rpm ↑ 

10 Epr Engine pressure ratio (P50/P2) - ~ 

11 Ps30 Static pressure at HPC outlet psia ↑ 

12 phi Ratio of fuel flow to Ps30 pps_psi ↓ 

13 NRf Corrected fan speed rpm ↑ 

14 NRc Corrected core speed rpm ↓ 

15 BPR Bypass Ratio - ↑ 

16 farB Burner fuel-air ratio - ~ 

17 htBleed Bleed Enthalpy - ↑ 

18 Nf_dmd Demanded fan speed rpm ~ 

19 PCNfR_dmd Demanded corrected fan speed rpm ~ 

20 W31 HPT coolant bleed Ibm/s ↓ 

21 W32 LPT coolant bleed Ibm/s ↓ 

Due to the diversity of engine performance variable selection, 

the data dimension collected by the sensor is not uniform. The 

data needs to be normalized before being input into the model, 

and the processed data will not change the degradation 

characteristics of the sensor data. This paper uses 

standardization to process the data of each sensor. The specific 

formula is as follows: 

𝑥𝑖
′ =

𝑥𝑖−𝜇𝑖

𝜎𝑖
    (9) 

In EQ.9, 𝜇𝑖 and 𝜎𝑖 are the average value and standard deviation 

of the ith characteristic signal 𝑥𝑖 in 𝑥. 

The normalized data is input into CAE network by the sliding 

window strategy according to the fixed length [6]. After a series 

of parameter adjustments, it is found that the training effect is 

better when the window size is 30. Therefore, the sliding 

window width 𝑇𝑊 is set to 30. The dataset is divided into: 

𝑋𝑖:𝑖+𝑇𝑊−1 = {𝑋𝑖 , 𝑋𝑖+1, 𝑋𝑖+2, . . . , 𝑋𝑖+𝑇𝑊−1} 

= [

𝑥𝑖,1 𝑥𝑖,2 ⋯ 𝑥𝑖,𝑚

𝑥𝑖+1,1 𝑥𝑖+1,2 ⋯ 𝑥𝑖+1,𝑚

⋮ ⋮ ⋮
𝑥𝑖+𝑇𝑊−1,1 𝑥𝑖+𝑇𝑊−1,2 ⋯ 𝑥𝑖+𝑇𝑊−1,𝑚

] ∈ 𝑅𝑚×𝑇𝑊  

In 21 kinds of sensor data, some data remain unchanged 

throughout the life cycle. In order to prevent the interference of 

irrelevant data and reduce the training time, We select the 14 
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dimensional sensor data of the 2nd, 3rd, 4th, 7th, 9th, 11th, 12th, 

13th, 14th, 15th, 17th, 20th, 21st as the original data input model. 

4.2. Feature extraction and selection 

Since CAE network has the advantage of self extracting features 

without obtaining labels, and there is no parameter redundancy, 

we choose CAE network as the feature extraction module of the 

structure. The main structure of the module is composed of three 

convolutional coding layers and three deconvolution decoding 

layers. Since the degenerate data is one-dimensional data, our 

convolution code is one-dimensional convolution. The specific 

network structure parameters are shown in Table 2. 

Table 2. Parameters of CAE network structure  

Layer Type Output size Activation function 

Convolutional Layer (30,14,16) RELU 

Pooling layer (15,7,16)  

Convolutional Layer (14,6,16) RELU 

Pooling layer (7,3,16)  

Convolutional Layer (3,3,16) RELU 

Pooling layer (1,1,1) Sigmoid 

Unpooling layer (3,3,16)  

Convolutional Layer (7,3,16) RELU 

Unpooling layer (14,6,16)  

Convolutional Layer (15,7,16) RELU 

Unpooling layer (30,14,16)  

Convolutional Layer (30,14,1) Sigmoid 

The characteristics of the output of the trained CAE network 

are shown in Figure 4. 

 

Fig.4. Features extracted from training set. 

It can be seen that, in the early stage of the training cycle, 

the characteristics do not change significantly, but only drop 

sharply when approaching the failure period. This is consistent 

with the degradation trend of aero-engine characteristics that we 

recognize. That is to say, the extracted feature vector can be 

used as the basic feature of RUL prediction. 

4.3. RUL interval prediction  

We use the LSTM-LUBE method mentioned above to predict 

the RUL interval. The structure consists of three layers of LSTM 

and four layers of full connection layer. The LSTM input is 

convolutional encoder output, the output vector size is set to 64, 

and the number of neurons in the four layers of full connection 

layer is 32, 16, 8, and 2 respectively. The loss function is shown 

in EQ.6. In order to balance the interval width and interval 

coverage, the proportional coefficient λ set to 0.5, use the 

random gradient descent algorithm to update the model 

parameters, and set the weight update batch to 64. Figure 5 

shows the loss descent in the training process. It can be seen that 

the loss function tends to be stable after 90 iterations. Therefore, 

in order to fully train the model, we set the total number of 

iterations to 120. 

 

Fig.5. Loss of training data set. 

4.4 evaluation index 

In this experiment, the commonly used interval evaluation 

indicators PICP, NPIW and CWC are used as evaluation 

indicators for model comparison. The relevant evaluation index 

formula is as follows. 

The Prediction Interval Coverage Probability (PICP) 

indicator is used to evaluate the reliability of interval prediction. 

It reflects the overall probability level that the actual prediction 

value falls within the prediction interval. 

{

𝑃𝐼𝐶𝑃 =
1

𝑛
∑ 𝑐𝑖

𝑛
𝑖=1

𝑐𝑖 = {
0 𝑦𝑖 ∉ [𝐿𝑖 , 𝑈𝑖]

1 𝑦𝑖 ∈ [𝐿𝑖,ℓ𝑈𝑖]

  (10) 

Where, 𝐿𝑖 and 𝑈𝑖 is the lower bound and upper bound of the 

ith PI. PICP is an index for measuring PI calibration with preset 
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confidence. Theoretically, PI can be trusted when 𝑃𝐼𝐶𝑃 ≥ (1 −

𝛼)%. 

Prediction Interval Normalized Average Width (PINAW) is 

used to evaluate the clarity of the prediction interval. Interval 

width is also an important indicator to evaluate the quality of an 

interval. 

𝑃𝐼𝑁𝐴𝑊 =
1

𝑛𝑅
∑ (𝑛

𝑖=1 𝑈𝑖 − 𝐿𝑖  )     (11) 

Where, n is the number of samples, 𝑈𝑖 and 𝐿𝑖 represent the 

upper and lower bounds of prediction, and R is the difference 

between the maximum value and the minimum value in the 

prediction samples, which is used to normalize the indicators. 

Coverage Width Criterion (CWC) is an evaluation index of 

prediction interval proposed by Khosravi et al. [1]. It combines 

the PICP index of coverage evaluation with the PINAW index 

of interval width evaluation to construct a comprehensive 

evaluation index of prediction interval. 

CWC= {
PINAW (𝑃𝐼𝐶𝑃 ≥ 𝜇)
PINAW+exp(-𝜂(𝑃𝐼𝐶𝑃 − 𝜇)) (𝑃𝐼𝐶𝑃 < 𝜇)

   (12) 

Where, 𝜇  And 𝜂  are super parameters, 𝜇  is the preset 

interval prediction nominal confidence level PINC, and 𝜂 is the 

penalty parameter, which is used to punish the case that the 

PICP index is lower than PINC. 

4.5 Experimental design 

1) RUL interval prediction results: In the experiment, we 

selected FD001 and FD003 datasets for life span prediction. To 

ensure the accuracy of the experiment, we conducted five 

experiments on each group of datasets and took the average of 

the prediction results. The prediction results of the two subsets 

are sorted according to the size of the remaining service life, as 

shown in Figure 6. 

It can be seen from Figure 6 that most of the prediction 

intervals of our method on CMAPSS datasets contain real data, 

and the smaller the remaining life, the narrower the interval 

width, and the higher the clarity of interval prediction. 

 

 

 
(a) Comparison of FD001 Dataset RUL prediction interval 

and Real remaining life 

 
(b) Comparison of FD002 Dataset RUL prediction interval 

and Real remaining life 

 
(c) Comparison of FD003 Dataset RUL prediction interval 

and Real remaining life 

 
(d) Comparison of FD004 Dataset RUL prediction interval 

and Real remaining life 

 

Fig.6. 

Figure 7 shows the prediction results of engine units in 

FD001 and FD003 data sets. (a) and (b) are the prediction 

results of engines 24 and 100 in FD001, and (c) and (d) are the 

prediction results of engines 24 and 100 in FD003. It can be 

seen from the figure that when the cycle period is small, the 

width of interval prediction is large. With the increase of cycle 
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period, the coverage and width of interval prediction are optimized towards high reliability and high definition. 

 
(a) The 24th engine test unit in FD001 

 
(b) The 100th engine test unit in FD001 

 
(c) The 24th engine test unit in FD003 

 
(d) The 100th engine test unit in FD003 

Fig.7. Comparison between actual value and prediction interval of remaining life of different engines. 

2) comparison experiment: Evaluate and compare models 

based on EQ 10-12 and run times. Compare our method with 

LUBE algorithm and Bootstrap method on four engine 

datasets,We set the confidence level 𝝁 to 90%.The experimental 

index results are shown in Table 3. 

TABLE 3. Comparison of interval prediction methods. 

 evaluation index FD001 FD002 FD003 FD004 

 

Bootstrap+SVR [12] 

PICP(%) 85.01 87.56 83.25 86.32 

PINAW(%) 16.67 14.25 17.97 18.23 

CWC 8.94 9.58 4.38 5.64 

Time(s) 87.68 90.29 75.26 86.39 

 

LUBE+CSS [29] 

PICP(%) 90.07 91.26 89.75 90.68 

PINAW(%) 30.02 32.56 28.14 29.77 

CWC 4.32 5.29 5.26 5.14 

Time(s) 65.42 71.22 67.23 68.97 

 

Our proposed 

PICP(%) 93.32 92.45 92.68 93.11 

PINAW(%) 21.16 20.31 18.54 19.69 

CWC 1.03 1.48 0.83 2.14 

Time(s) 98.26 97.15 89.59 85.24 

It can be seen from the data in Table III that our method has 

better reliability and clarity than the LUBE method using the 

heuristic algorithm. The PICP average is about 92.82%, 

effectively ensuring the reliability of the prediction interval. At 

the same time, the PINAW average is about 20.14, which is also 

better than the traditional LUBE algorithm. Compared with 
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Bootstrap, although Bootstrap has smaller PINAW, its interval 

coverage rate (PICP) is far less than our method, and the 

reliability of the prediction interval is difficult to guarantee. By 

comparing the comprehensive evaluation index CWC, we can 

also see that the CWC index of our method is smaller, and the 

fluctuation is more stable, which is generally better than the 

Bootstrap and LUBE+CSS methods. 

5. Conclusion 

(1) The neural network structure based on convolutional self 

encoder can adaptively extract the feature vector of the engine 

through encoding and decoding, and effectively reduce the 

dimension of the input multi-dimensional time data, reducing 

the training time. 

(2) The residual life interval prediction model based on LSTM-

LUBE can make full use of the time series information in the 

degraded data, and improve the prediction accuracy by 

constructing a differentiable interval prediction loss function 

and updating the model parameters with gradient descent. 

(3) The LSTM-LUBE method is tested on the CMAPSS dataset 

and compared with other interval prediction methods. The 

results show that the proposed method is effective. 

 

6. Feature work 

The future research work can further optimize the loss function, 

and only calculate the interval width of the actual value in the 

interval when optimizing the interval width. And further verify 

the effectiveness and universality of the method in more 

datasets.
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